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INTRODUCTION

Objectives:
This research has the following main aims.
1. To develop and implement a fuzzy object definition method for the
detection and delineation of parenchymal density, masses and

microcalcifications in digitized mammograms.

2. To develop and implement a fuzzy object definition method for the
classification of lesions and mammographic densities.

3. To conduct evaluation studies using histologically verified mammographic
data to determine the efficacy of the proposed method of lesion detection
and quantitative classifications.

The focus during the report period has been on the following tasks:

Task 4. Conduct evaluation study for single projection lesion detection.
Task 5. Prepare technical report/paper on the work done so far.

Task 6. Implement density classification methods, experiment with affinity
relations, verify effectiveness with a few sample data sets, and
refine method if needed.

Task 7. Conduct evaluation study for density quantification.

Purpose:

Existing studies on false negative mammograms have found patient age, tumor histology and
interpretive variability to contribute to false negative diagnosis. However, breast density appears to
be the primary cause of missed carcinomas. The radiographic appearance of female breast differs
from woman to woman in relation to the amounts of fat and fibroglandular (connective and
epithelial) tissue present. Areas of fat are radiographically lucent while fibroglandular tissues are
radiographically dense. There have been many studies looking at the relationship between

mammographic density and risk of developing breast cancer. Although a few studies reported no



association with increased risk, the majority of studies have found an association between
parenchymal patterns and breast cancer risk. A recent meta-analysis [1] of all studies confirms that
subjects with mammographic densities have an increased risk of breast cancer relative to those
without densities. The risk increases with the density of the breast [2]. The Wolfe classification
was proposed many years ago to identify groups of women at high risk for breast cancer [3]. This
scheme was widely used for many years, but has fallen into disuse because of several limitations.
For example, inter-observer variability is a problem when the radiologists’ subjective assessment is
~ used to classify the amount of density present [4]. Secondly, the magnitude of the increased risk
has varied widely in the published studies [1]. Thirdly, identification of this risk factor for a given
woman has not altered screening recommendations [5, 6]. Recently a computer-assisted user-
interactive method to quantify mammographic density has been published [5], which concluded
that quantitative classification of densities allows for more specific gradients of risk than do
Wolfe’s classifications.

An objective, repeatable quantitative measure of risk derived from mammographic densities
will be useful in recommending an alternative screening process. An architecture dependent
quantitative analysis of the mammographic densities will make the screening process more
effective. Image processing efforts toward this goal seem to be very sparse in the literature, and
automatic and efficient methods for generating this measure do not seem to exist.

The focus of this research is on utilizing and extending recently developed fuzzy
connectedness method [7] to fulfill the main objectives. This methodology has been successfully
applied in several applications including multiple sclerosis lesion detection [8-12], MR angiography

[13] and craniofacial soft tissue imaging [14]. The approach of integrating density-derived




information (total density and architecture) into the lesion detection method will hopefully further

improve this accuracy.

Scope:

Computer-assisted analysis of mammography density would provide an objective, quantitative
measure of cancer risk factor. This measure will be useful in total risk analysis in several ways. First,
such risk analysis could influence the choice of alternative screening paradigms such as intervals
between mammograms or use of other modalities such as MRI. Second, this measure could be useful
in selecting a group of women for whom the risk-benefit ratio of a potentially toxic preventive
measure, such as tamoxifen, would be favorable [15, 16]. Third, this measure could be used to signal
the need for more careful interpretation of a subset of mammograms. For example, double-reading
might be indicated for mammograms above a certain level of density. Fourth, a variety of computer-
assisted techniques continue to be developed for mammographic lesion detection. No single
algorithm is optimal for all mammograms. Objective density quantification could be helpful for
selecting the most appropriate computerized method, or as we propose here for tailoring a selected
algorithm. Clearly, an automatic, accurate, and objective method for density quantification will

allow the study of the effect of this variable on the implementation of mammograms.

METHODS
Task 4:

During the past year, we have been investigating several methods for the delineation of lesions
in digitized mammograms. W have basically pursued two types of approaches.

The first approach is based on fuzzy connectedness. It looks for abnormality in the network by

high-strength-of-connectedness paths within the image. The strength of connectedness of every




connecting path between every pair of pixels is determined using the method described in [17]. This
method is near the final stages of its development and needs some further work. There are many
avenues here which we did not realize earlier. This approach seems to offer, without having to
explicitly detect and delineate lesions, a method to identify architectural distortions. One exciting
possibility is to determine if sufficient distortion in architecture can be detected well ahead of the
time of appearance of visible lesions. We are investigating this avenue currently.

The second approach we have developed is called live wire [18]. In this method, an operator
initially selects a point in the vicinity of a lesion boundary. At this time a “live wire” is displayed in
real time as the operator moves the mouse cursor. The live wire represents the best path from the
initial point selected by the operator to the current cursor position. Since the best path is always
computed and displayed in real time, the user can test how to select a largest possible boundary
segment by moving the cursor close to the boundary and checking how well the live wire snaps onto
the boundary. If this boundary segment is acceptable, the user deposits the cursor which now
becomes the new initial point and the process continues. Typically 2-3 points selected on the
boundary in this fashion are adequate to segment an entire boundary. A 3D version of this method
has also been developed [19] for segmentation of lesions in MR images. This method has also been

utilized in other applications [20, 21].

Task 5:
We have so far written 8 papers, four full conference papers and four journal papers, reporting
the results of this investigation. We have also presented the results at four conferences. One patent

application has also been filed. These are listed later in this report.




Tasks 6, 7:

A method for automatically segmenting dense regions and quantifying density has been fully
developed, implemented and tested on over 100 mammograms [22]. The method is described below
in some detail.

Segmentation of breast from background: At the very beginning, using 3DVIEWNIX [23]
supported LIVE-WIRE [18] tool, regions corresponding to pectoral muscles are interactively
excluded when those are projected in the image. In the entire process, this is the only step requiring
operator intervention. Fuzzy connectivity is used as the underlying technique in segmenting breast
from background. To apply the fuzzy connectivity model, we need to estimate different parameters.
Studying 120 images from 60 patients, we found that the intensity histogram always contains a
highly prominent peak at the lower intensities, and that peak is contributed mostly by background.
The first prominent peak in the intensity histogram is detected and used to (roughly) calculate the
mean and standard deviation of background intensity. To apply the fuzzy connectivity algorithm, we
need to select a set of reference (seed) pixels. For this purpose, we assume that the rightmost column
in the image always lies in the background. We include all these pixels in the reference set. Fuzzy
connectedness processing starting from these pixels gives us a fuzzy connectivity image for
background. We discard connectivity strengths in the upper half and keep the lower half as the breast
region.

Fuzzy connectivity image for glandular tissue: The fuzzy connectivity method is used to
enhance glandular dense regions and to suppress fat tissues; the resulting fuzzy connectivity image,
in turn, is used for automatic segmentation of the glandular region. The major task in applying the
fuzzy connectivity model is to estimate the parameters of the algorithm and to select the set of
reference pixels. After ignoring the upper 0.01 percentile intensities, the mean and standard
deviation parameters (for the homogeneity and feature-based affinity) are estimated from those parts
of the breast region falling in the upper 25% of the intensity range. Finally, the pixels in the breast
region falling in the upper 15% of the intensity range are selected as reference pixels. The fuzzy
connected image for the glandular tissue is then computed.

Automatic threshold selection: For any threshold, the image is divided into two regions.
Local homogeneity based affinity between every pair of spatially adjacent pixels is used to define

their likeliness of belonging to the same object or of not belonging to the same object. The optimum




threshold is determined from the associated statistics called threshold energy. The threshold with the
minimum threshold energy is selected as the optimum threshold. We generate several descriptors
from the segmented binary image and the original image to quantify the glandular tissues as
described below. Note that all steps are completely automatic except the exclusion of pectoral
muscles if they are included in the mammogram.

Density quantification: The method has been tested on over 80 studies (each study produces
two digitized mammograms) from routine exams from two projections (CC and MLO). The images
were scanned on a Lumisys scanner at a resolution of 100 microns. The population included normal
as well as cancer cases (masses and calcifications). Except the exclusion of pectoral muscles, the
entire method has worked automatically on all images wherein all parameters required by the
algorithms are selected automatically. The algorithms produced visually acceptable segmentations in
all images. From the segmented regions and the image intensities in them, we compute a set of
density related parameters including total glandularity(TG), TG/total fat(TF), TG/average fat(AvF),
TG/area of breast(AB), area of glandularity(AG), AG/area of fat(AF), AG/AB. TG and TF are
computed by integrating radiographic intensity over respective segmented regions while AG, AB
and AF are computed by counting the number of pixels in the respective regions. Finally, AvF is
computed by dividing TF by AF.

To evaluate the density quantification method, we tested the correlation between the
parameters from the two projections (CC and MLO). The correlations for TG, TG/TF, TG/AVF,
TG/AB, AG, AG/AF and AG/AB are 0.967, 0.902, 0.951, 0.944, 0959, 0.915 and 0.941,
respectively.

We also conducted a phantom experiment as follows. A rectangular parallelepiped wax object
was suspended in a cylindrical water bath and imaged at different orientations. The various measures
based on integrating intensity in the segmented object (wax) region produced more accurate density

quantification than the area measures.

Task 8:

This task has to do with writing papers on density quantification and actually belongs to Year
3, but has been completed based on the density quantification work done so far. See list of papers

below.
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KEY RESEARCH ACCOMPLISHMENTS
The development of a novel method of defining the “hanging-togetherness” of dense regions via
scale-based affinity and connectedness [17].
An interactive method of lesion segmentation using live ire [18, 19].
An automatic, validated method of mammographic density quantification and the development
of a host of intensity-based parameters that are more accurate than the measure of the area of

dense regions.

A novel method of detecting architectural distortions without explicitly delineating lesions (the
method being tested for its effectiveness in predicting the onset of lesions).

REPORTABLE OUTCOMES
The following papers/patents have been presented, submitted or published.
. P.K. Saha and J.K. Udupa: “Scale-based fuzzy connectivity: A novel image segmentation

methodology and its validation, “ SPIE Proceedings 3661:246-257, 1999.

. P.K. Saha and J.K. Udupa: “Scale-based fuzzy connected image segmentation: Theory,
algorithms and validation,” Computer Vision and Image Understanding, accepted.

. P.K. Saha, J.K. Udupa, E.F. Conant and D.P., Chakraborty: “Near-automatic segmentation and
quantification of mammographic glandular tissue density,” SPIE Proceedings 3661:266-276,
1999.

. P.K. Saha, J.K. Udupa, E. Conant, D.P. Chakraborty and D. Sullivan; “Breast tissue glandularity
quantification via digitized mammograms,” IEEE Transactions on Medical Imaging, submitted.

. AX. Falcao, J.K. Udupa and F.K. Miyazawa: “Ultrafast user-steered segmentation paradigm:
Live-wire-on-the-fly,” SPIE Proceedings 3661:184-191, 1999.

. AX. Falcao, J K. Udupa and F.K. Miyazawa: “An ultrafast user-steered image segmentation
paradigm: Live-wire-on-the-fly,” IEEE Transactions on Medical Imaging,” accepted.

. A.X. Falcao and J.K. Udupa: “Segmentation of 3D objects using live wire,” SPIE Proceedings
3034:228-235, 1997.
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A.X. Falcao and J.K. Udupa: “A 3D generalization of user-steered live wire segmentation,”
Medical Image Analysis, accepted.

P.K. Saha and J.K. Udupa: “A scale-based fuzzy connectedness method for object segmentation
in images,” US Patent, submitted.

CONCLUSIONS

The new scale-based fuzzy connectedness method is more robust and effective than the original
method. It is very effective for mammographic image segmentation.

Glandularity is considered to be one of the strongest factors for breast cancer. Automatic breast
glandularity quantification from digitized mammograms is practical using the proposed method.
The method removes the subjectivity inherent in interactive threshold selection techniques
currently used.

The live wire method is effective in segmenting mammographic lesions. It seems to be more
robust than the active contour methods commonly used. Its utility is being evaluated in 2D
(mammographic) and 3D (MRI) lesion segmentation.

The fuzzy connectedness method facilitates various ways of characterizing the architecture of the
breast. There are some indications that the distortions in architectures as measured by fuzzy
connectedness parameters may predict the occurrence of visible lesions. This is being tested at
present.
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Near automatic quantification of breast tissue glandularity via
digitized mammograms

Punam K. Saha®, Jayaram K. Udupa®, Emily F. Conant®, Dev P. Chakraborty®

*Medical Image Processing Group, ?Breast Imaging Section, “Physics Section,
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104

ABSTRACT

Studies reported in the literature indicate that breast cancer risk is associated with mammographic densities. Al-
though, an objective, repeatable quantitative measure of risk derived from mammographic densities will be of great
use in recommending alternative screening paradigms and [or preventive measures, image processing efforts toward
this goal seem to be very sparse in the literature, and automatic and efficient methods do not seem to exist. In this
paper, we describe and validate an automatic and reproducible method to segment glandular tissue regions from fat
within breasts from digitized mammograms using scale-based fuzzy connectivity methods. Different measures for
characterizing density are computed from the segmented regions and their accuracies in terms of their linear correla-
tion across two different projections (CC and MLO) are studied. It is shown that quantization of glandularity taking
into account the original intensities is more accurate than Jjust considering the segmented areas. This makes the
quantification less dependent on the shape of the glandular regions and the angle of projection. A simple phantom
experiment is done that supports this observation.

Keywords: Image analysis. mammograms. glandular tissue, image segmentation, connectedness

1. INTRODUCTION

In the mid 1970s, studies by John Wolfel:? suggested that an association existed between mammographic parenchymal
patterns and the risk of developing breast cancer. Since then there have been many studies looking at the relationship
between mammographic fibroglandular density (briefly, density) and risk of developing breast cancer. Although a
few studies reported no association with increased risk, the majority of studies have found an association between
parenchymal patterns and breast cancer risk. A recent meta-analysis® of all studies confirms that subjects with
mammographic densities have an increased risk of breast cancer relative to those without densities. The risk increases
with the density of the breast.# In is well known that women with dense breasts appear to have a four to six fold
increase in breast cancer risk. Cancers are detected at later stages in dense breasts and mammographers recognize
that their diagnostic accuracy is lower in such women.

The Wolfe classification was proposed many years ago to identify groups of women at high risk for breast cancer.?
This scheme was widely used for many years, but has fallen into disuse because of several limitations. For example,
inter-observer variability is a problem when the radiologists’ subjective assessment is used to classify the amount
of density present.® Secondly, the magnitude of the increased risk has varied widely in the published studies.?
Thirdly, identification of this risk factor for a given woman has not altered screening recommendations.”8 Recently an
computer-assisted user-interactive method to quantify mammographic density has been published,” which concluded
that quantitative classification of densities allows for more specific gradients of risk than do Wolfe’s classifications.

Computer-assisted analysis of mammographic density would provide an objective, quantitative measure of cancer
risk factor. This measure will be useful in tota] risk analysis in several ways. First, such risk analysis could influence
the choice of alternative screening paradigms such as intervals between mammograms or use of other modalities such
as MRI. Second, this measure could be useful in selecting a group of women for whom the risk-benefit ratio of a
potentially toxic preventive measure, such as tamoxifin, would be favorable.!®!” Third, this measure could be used
to signal the need for more careful interpretation of a subset of mammograms. For example, double-reading might
be indicated for mammograms above a certain level of density.

Correspondence: Email: saha@mipg.upenn.edu; http://www.mipg.upenn.edu/“saha/index.html; Telephone: 215 662 6780
Fax 215 898 9145

Part of the SPIE Conference on Image Processing ® San Diego, California ® February 1999
266 SPIE Vol. 3661 & 0277-786X/99/$10.00




Image processing efforts toward this goal seem to be very sparse in the literature, and automatic and efficient
methods for generating this measure do not seem to exist. Boyd et. al.” studied the relation between mammographic
densities and breast cancer risk using both radiologist classification and computer assisted density measurement. The
computer assisted measurement was based on interactive density thresholding using two user selected thresholds.
They observed statistically significant increases in breast cancer risk associated with increasing mammographic
density in both methods. Boone et. at!'® developed and evaluated a computerized method of calculating a breast
density index and compared this index with breast density index ranking provided by mammographers. Byng et. al.!®
made a quantitative symmetry analysis between mammograms of different breasts of the same patient and between
mammograms at different projections of the same breast via subjective classification, interactive thresholding, regional
skewness measurement and texture analysis. Ursin et. al.2® studied the change in mammographic densities in women
participating in a trial of a gonadotropin-releasing hormone agonist (GnRHA)-based regimen for breast cancer
prevention using simultaneous evaluation, expert outlining and non-expert computer-based thresholding methods.
They observed that all three methods yielded statistically significant reduction in densities from baseline to the
12-month follow-up mammogram in women on the contraceptive regimen. They found a high correlation between
computer-based results and the results from the expert outlining method. Huo et. al.2! studied the ability of
computer extracted features, computed over a region of interest selected from the central breast region, along with
age to identify women at risk. They found that a computerized characterization of parenchymal patterns may be
associated with breast cancer risk.

In this paper, we describe and validate an automatic and reproducible method to quantify mammographic densities
and study the accuracy of related parameters. Further, we show that quantitation of glandularity taking into account
the original intensities is more accurate than just considering the segmented area. This makes the measurement less
dependent on the shape of the glandular regions and the angle of projection. In Section 2, a brief description of the
scale-based fuzzy connectedness principles is presented that forms the core of the proposed method. In section 3,
we describe how different parameters are automatically selected for applying fuzzy connectivity on different regions.
In Section 4, we discuss the results and validate the method by studying linear correlations of different area and
density related parameters obtained from a set of mammograms across two projections and also by a phantom study.
We show that quantitation of glandularity taking into account the original intensities is more accurate than just
considering the segmented area. Finally, we state our conclusions in Section 5.

2. SCALE-BASED FUZZY CONNECTEDNESS PRINCIPLES

The concepts described here are applicable to n-dimensional (fuzzy) digital spaces; see®®?3 for details. However,
since our application deals with 2D images, we confine only to two-dimensional (2D) case.

Most real objects have a heterogeneous material composition. Further, imaging devices have inherent limita-
tions including spatial, parametric, and temporal resolutions. In the acquired images of objects, these introduce
inaccuracies and artifacts such as noise, blurring, and background variation. The artifacts together with material
heterogeneity cause the object regions to exhibit a gradation of intensity values in the image. Even if the physical
object is perfectly homogeneous and is made of exactly one material, its image will exhibit a graded composition
within the object regions due to artifacts. In spite of the graded composition, knowledgeable human observers usu-
ally do not have any difficulty in perceiving object regions as a gestalt. That is, image elements in these regions
seem to hang together to form the object regions in spite of their gradation of values. These two notions — graded
composition and hanging togetherness — are addressed by the scale-based fuzzy connectedness methods for defining
objects in acquired images.?* The scale-based method is outlined below to the extent needed to follow our breast
segmentation approach. See®® for details.

Throughout we denote the digitized mammographic image, referred to as a (2D) scene, by C = (C, f), where C
denotes the pixel array, and f(c) denotes the pixel value for any ¢ € C. The range of f is assumed to be [L, H]. We
define a fuzzy relation , called fuzzy affinity, on the pixel array C. This is intended to be a local relation among
pixels that are nearby. The strength of this relation between any two pixels ¢ and d in C, denoted by u.(c,d),
depends on (1) how far ¢ and d are; (2) how similar the intensity values (or other features) of the pixels in a circular
neighborhood around ¢ are to those around d; (3) how close the intensity values (or other features) of the pixels
around ¢ and those around d are to some expected values (or features) for the object region under consideration.
The idea behind (1) is that to have the notion of a fuzzy adjacency — the further two pixels are the less adjacency
(and, therefore, affinity) they have. The strength of the fuzzy adjacency relation between any two pixels ¢ and d in
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C is denoted by palpha(c,d). The idea behind (2) is to define a homogeneity-based affinity between nearby pixels ¢
and d. The more homogeneous the regions in which ¢ and d are, the more is their affinity. The idea behind (3) is to
define an object-feature-based affinity between nearby pixels ¢ and d. For the object regions, there is some expected
value of the intensity (of their features). The closer the values of the pixels in the vicinity of ¢ and d are to this
expected value, the greater must be the affinity of ¢ and d. The size of the circular neighborhood is determined by
the “scale” at ¢ and d. Scale is a well established concept in image processing. The object scale in C at any pixel ¢
in C denotes the size (radius) of the largest disc centered at c that lies entirely in the object region. Ironically, it
appears that computing scale requires image segmentation. However, it is possible to develop algorithms that give
a rough estimate of object scale at every pixel based on measuring homogeneity discontinuities and not requiring
explicit segmentation. We have demonstrated in®? that, this estimation is sufficient to give a good approximation of
the scale and to improve fuzzy-connectedness-based segmentation.

The notion of affinity captures the local hanging-togetherness property of pixels. The notion of fuzzy connected-
ness expands this into a global phenomenon as follows. Consider any two pixels ¢ and d (not necessarily nearby) in
C. Consider any path (i.e., a sequence of nearby pixels) starting from c and ending in d. We define a “strength of
connectedness” of this path as simply the smallest affinity (weakest link) along the path between a pair of successive
pixels. Fuzzy connectedness is a global fuzzy relation, denoted K, on C. The strength of this relation between ¢
and d (not necessarily nearby), denoted pk(c,d), is the largest of the strength of connectedness of all possible paths
between ¢ and d. A scale-based fuzzy connected object of C of strength # that contains a specified pixel o in C is
a subset O of pixels of C. O is such that, for any two pixels ¢,d in O, uk(c,d) > 6, and for any pixel e not in O,
pi(c,e) < 6. Given C, o, 8 and a scale-based affinity relation , finding O requires literally the computation of the
strength of connectedness of all possible paths between each of the set of all possible pairs of pixels in C. However,
the theory leads to practically viable algorithms®??? of far less complexity. The method also provides “training”
facilities so that the parameters of x that are suitable for a given application can be determined automatically by
painting sample regions in a few image data sets related to the application.

For any scene C = (C, f), any fuzzy affinity x, any pixel o, we define the fuzzy connectivity scene of C with respect
to o to be the scene Cxo = (C. fro), where for any ¢ € C, fxo(c) = px(o,c). That 1s, the value assigned to any
pixel ¢ in Ck, is the strength of connectedness of ¢ and 0. We generalize this definition from a single pixel o to set
of pixels X by setting fxx (c) = maxeex {ix(z,c)}. That is, in the fuzzy connectivity scene Cxx = (C, frx)ofC
with respect to X, any pixel ¢ is assigned a value fxx(c) that is the maximum of the strength of connectivity of ¢
with the elements of X. Connectivity scenes are what are output by the fuzzy connectedness algorithms.?%23 Upon
thresholding them, we get the segmented fuzzy objects.

3. METHODS

Our method of fibroglandular density quantization consists of the following steps: (1) segmentation of the breast
region from background; (2) segmentation of fat and glandular regions within the breast; (3) estimation of the density
quantification parameters. These are described in separate subsections below.

3.1. Segmentation of Breast from Background

At the very beginning, using 3DVIEWNIX?* supported live-wire?® tool, regions corresponding to pectoral muscles are
interactively excluded when those are projected on to the scene. This tool takes help from the operator in recognizing
where the pectoral muscles are in the image but does the delineation of their boundary automatically. In this fashion,
subjectively is minimized. In the entire process of glandularity quantification, this is the only step requiring operator
intervention, if pectoral muscles appear in the mammographic projection. Scale-based fuzzy connectivity is used
for segmenting the breast region from the background. Our approach will be to segment the background region
rather than the breast region. To do this, we need to (1) determine the parameters of the membership function u.
of the affinity relation  for the background; and (2) specify a set of pixels in the background region. These are
accomplished automatically as described below.

In this study, we have utilized 120 mammograms from 60 patients, each in two projections — MLO and CC.
Studying all the 120 mammograms, we found that intensity histograms of mammograms always contain a highly
prominent peak at low intensities, and this mode corresponds to the background. A typical histogram is shown in
Figure 1. The first prominent peak in the histogram is detected and the intensity m, corresponding to this peak
is considered as the mean background intensity. Observing that the histogram is roughly symmetric about mg, the




Figure 1. A typical mammographic intensity histogram.

standard deviation of background intensities o} is computed as the root-mean-squared distance of the intensities
from m, as follows. Let h(i) represent the number of pixels in the mammographic scene with intensity ¢ (i.e., h(3) is
the height of the histogram at 7). Then, o is determined as follows

ZLSiSmb (i — my)? h(i)
Lr<i<m, M)

Instead of an operator painting pixels in the background region for training, the set of pixels in C satisfying L < f(c) <
my + 30y is utilized for estimating the parameters of p.. The exact functional form of p, utilized here is as described in
an earlier paper that dealt with the theory and algorithms for the scale-based approach.?® Since the full description
requires a detailed explanation of the concept related to homogeneity-based and object-feature-based affinity, it is
not included here. We assume that the top-right and the bottom-right corners in the mammographic scene always lie
in the background and include these two pixels in the reference set X for scale-based fuzzy connectedness processing
starting from these two pixels gives us a fuzzy connectivity scene for the background. Figure 2(b) shows such a
connectivity scene for the mammogram at CC projection shown in Figure 2(a). As shown in Figure 2(b), there is a
very good contrast between the background and the breast region. We discard connectivity strengths greater than
half the maximum strength and keep the lower half as the zone for the breast region. This zone, however, often
includes high noise pixels and markers in the background often used during mammography. To eliminate these pixels,
the leftmost 1-pixel on the middle row in the thresholded connectivity scene is chosen as the reference pixel and the
hard connected component containing this pixel is found as the breast region. Figure 2(c) shows the hard segmented
breast region for the original mammogram of Figure 2(a). This method has worked correctly and automatically in
all studies we have analyzed so far.

Op =

(1)

3.2. Segmentation of Fat and Glandular Regions

Our strategy here is to segment the glandular region as a set of fuzzy connected objects. The segmentation operation
is confined to the breast region. The fat region thus gets defined indirectly as the complement of the glandular region
in the breast. For this segmentation, as in breast segmentation, we need to specify the parameters of u, as well as
a few pixels as the starting information in the glandular region.

Our approach to computing the parameters of u, will be as for the segmentation of the breast region — to
determine automatically a set of pixels that are definitely in the glandular region and then to estimate the parameters
from the intensity distribution within the set of pixels. To determine this set, the largest intensity value M AX is
determined by ignoring the upper 0.1 percentile of intensity in the histogram of the breast region. Similarly, the
smallest intensity value MIN is determined by ignoring the lower 0.1 percentile of intensity. We then select within
the breast the set of pixels having intensity not less than MIN + 0.75(M AX — MIN) for estimating the parameters
of p,. Finally, the set of pixels in the breast region with intensity greater than MIN + 0.85(MAX — MIN) is
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Figure 2. (a) An original mammographic scene for a patient’s breast at CC projection. (b) Scale-based fuzzy
connectivity scene for the background. (c) Segmented breast region. (d) Scale based fuzzy connectivity scene for the
glandular region.

used as the set of reference or seed pixels. Figure 2(d) shows the scale-based fuzzy connectivity scene obtained for
the glandular region for the original mammogram in Figure 2(a). In the next section, we describe an automatic
threshold selection method that is applied on the fuzzy connectivity scene for a segmentation of the breast region
into glandular and fatty regions.

3.3. Automatic threshold selection

In this section, we describe a new automatic threshold selection method for segmenting the glandular regions from
the fuzzy connectivity scene. The method is a general threshold selection technique that is applicable to any image,
and not necessarily only to connectivity scenes. It optimizes threshold energy computed by considering spatial
arrangements of pixel intensities within each region and across regions. We emphasize that the processing is now
confined to the breast region. The basic idea is as follows. Every threshold divides the scene into two regions.
A second order statistic, threshold energy, of local disagreements in the scene stemming from this partitioning is
estimated and is used as a criterion for optimizing the threshold. Threshold energy characterizes the goodness
(rather, badness) of a particular threshold and is defined as follows. Let B denote the set of pixels in the segmented
breast region. We define two fuzzy relations p and p, respectively called likeliness of belonging to the same object and
likeliness of belonging to different objects, on the pixels in B. Strengths of both these relations between any two pixels
¢ and d in B depend on (1) how far ¢ and d are; and on (2) how similar the intensity values (or other features) of
the pixels in the circular neighborhood around c are to those around d. As discussed in Section 2, size of the circular
neighborhoods around ¢ and d depends on the object scales at ¢ and d. In fact (2) is the measure of homogeneity-
based affinity between ¢ and d and its strength is denoted wy(c, d) (see?® for details). Two controlling parameters
(indicating expected object homogeneity) are required to calculate the value of the fuzzy relation ¢. These two
parameters are estimated as the mean and standard deviation of intensity differences of all pairs of adjacent pixels
in the region with pixel intensities (connectedness values) falling in the upper half of the histogram. The strength of
the fuzzy relation “likeliness of belonging to the same object” between two pixels ¢, d € B, denoted p,(c,d), is then
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Figure 3. (a), (b) Threshold energy and connectivity strength distributions for the connectivity scene of Figure
2.(d). (c) Segmented glandular region using automatic thresholding.

computed as follows.
> a,b € Bs.t. Kala,b)

(a,b) < pylc,d)
po(c,d) = pa(c, d)—22 = ) (2)
g ) : ) Za,bEB tala,b)

The strength of the fuzzy relation “likeliness of belonging to different objects” between two pixels ¢,d € B, denoted
pg{c, d), is computed as follows.

Z a,b€ Bs.t. pala,b)

5(c,d) = pale,d) | 1— —2elat) Srvied . 3
llp( ) = palc,d) Za,bgaﬂa(a,b) (3)

Let fy(c.d,t) denote a predicate that takes a value ‘1’ when the pixels ¢, d belong to the same object at the threshold
¢ and ‘0’ otherwise. Then the threshold energy E(t) is determined as follows.

E@t)= Y fole.d,huylc.d)+ (1= fyle.d, t)uzlc,d) (4)

c,dEB

In words, E(t) expresses the level of concordance between the two regions resulting by applying the threshold to the
connectivity scene. Finally, the threshold for which E(t) is minimum (indicating minimum concordance or maximum
discordance between the two regions) is selected as the optimum threshold. For the fuzzy connectivity scene of Figure
2.(d), distribution of E{t) is shown in Figure 3(a) while Figure 3(b) shows the location of the optimum threshold on
the histogram of the connectivity scene of Figure 2(d). The segmented binary scene is shown in Figure 3(c).

3.4. Density Quantification

From the original scene and the segmented fat and glandular regions, the following parameters are computed.
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TG: Total glandularity within the breast region computed as the sum of intensities of pixels in the segmented
glandular region.

TF: Total fat within the breast region computed as the sum of intensities of pixels in the segmented fat region.
AB: Total area of breast computed as the number of pixels in the segmented breast region.

AG: Total area of glandularity within the breast region computed as the number of pixels in the segmented glandular
region.

AF: Total area of fat within the breast region computed as the number of pixels in the segmented fat region.
AvVF: Average pixel intensity within the fat area given by TF/AF.

TLG: Total logarithmic glandularity within the breast region computed as the sum of logarithmic values of pixel
intensities in the segmented glandular region.

The following parameters, some of which are derived from the above, which may be more meaningful, are actually
used in our testing: TG, TG/TF, TG/AvF, TG/AB, AG, AG/AF, AG/AB, and TLG. Linear correlations of each
these parameters across two different projections (CC and MLO) were tested for all 60 studies.

4. RESULTS AND DISCUSSION

The Method has been tested in two wavs — (1) validation on mammograms at two different projections, and (2)
validation on phantoms.

4.1. Validation on Mammograms

The method has been tested on 60 studies selected from our database. Each study had two mammographic projections
— CC and MLO. These mammograms were digitized on a Lumisys scanner at a resolution of 100 microns. The
population includes normal as well as benign and malignant masses and calcifications. Except for the exclusion of
pectoral muscles in some cases, the entire method worked automatically on all mammograms wherein all parameters
required by the algorithms were selected automatically. The algorithms produced visually acceptable segmentations in
all 120 cases. Figure 4 demonstrates the results of application of the proposed automatic method of tissue glandularity
segmentation on several mammograms. The linear correlation coefficients for the parameters TG, TG/TF, TG/AVF,
TG/AB, AG, AG/AF, AG/AB, and TLG derived from the two sets of projection images were 0.967, 0.902, 0.951,
0.944, 0.959, 0.915, 0.941 and 0.960, respectively.

The high value of correlation coefficients indicates that our method of measurement is highly consistent between
the two projection images of the same patient. The highest correlation is obtained for TG. Generally the parameters
that use area measurements yielded lower correlations. This is understandable because, unless the 3D shape of the
actual glandular region in the breast is approximately spherical, the shapes of its CC and MLO projections may be
quite different from each other. This may yield very different area measures (AG, AF) although the total glandularity
may still be the same. To verify these hypothesis, we selected among the 60 pairs of studies a subset in which the
shapes of projections of the same breast in CC and MLO appeared quite different. For this subset, we then computed
the correlation coefficients. The coefficients for TG and AG for this subset were 0.898 and 0.68, respectively. For
the remaining studies, these coefficients were 0.977 and 0.976, respectively. To further verify this hypothesis, we
conducted a phantom experiment described below.

4.2. Phantom Study

We affixed, using double-stick tape, a wax rectangular parallelepiped, measuring 0.85cm x 1.05cm X 4.6 cm, to the
base of a cylindrical container. The latter was filled with water to a height of 5 cm. An image of this phantom
was taken on a GE-DMR mammography machine at 27 kVp and 400 mAs. The X-ray beam was directed along the
axis of the plastic cylinder which closely corresponded with one of the axes of the wax rectangular parallelepiped.
Two more images were then acquired with the parallelepiped tunnel so as to align the other two axes with the beam
direction. In this mammer we obtained three orthogonal projections of the wax object. The digitized phantom
images are shown in Figures 5.(a)-(c). Since, wax has a lower atomic number than water, it appears darker. It is
meant to simulate fatty tissue. The water simulates the glandular tissue. In breast images, the fatty regions surround




Figure 4. Results of application of the proposed glandularity segmentation method on several mammograms at
CC and MLO projections. In each set, the original scene, the connectivity scene for the glandular region and the
segmented glandular region are shown.
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Figure 5. (a)-(c) Phantom images captured at three orthogonal positions of the object. (d)-(f) Fuzzy connectivity
scenes. (g)-(i) Segmented object regions from fuzzy connectivity scenes.

the glandular region, but in our simulation the reverse is true. To apply our automatic algorithms, the foreground
image containing the projected water and wax regions was negated after segmenting out the background region.
Figures 5.(d)-(f) show the fuzzy connectivity scenes for the wax object in the three phantom images. Automatic
thresholding was then applied and Figures 5.(g)-(i) show the segmented wax regions. Table 1 shows the value of
different parameters computed over the segmented wax and water regions in the three images. Since the average
pixel intensity in the wax region (object of interest) is less than that in the surrounding water region, the TLG
parameter is computed in a slightly different way by summing the logarithmic values of the ratios of average water
pixel value to the pixel intensities over the segmented wax region. From Table 1 we observe that TG is more stable
than AG over different projections in the phantom images. In fact, TLG is very stable across the projections and
supports our hypothesis that the total object material volume is better captured by integrating the pixel intensities
over the segmented region rather than by computing the area of this region. TLG did not show better correlation
than TG in patients studies which is perhaps due to the fact that, unlike the phantom, breasts are not composed of
two homogeneous materials.

Table 1. Values of different parameters computed over the segmented wax regions in three images.

[ TG | TG/IF | TG/AvF | TG/AB | AG | AG/AF | AG/AB | TLG | AVF |
2128x 107 | 0.03117 | 16671 | 36.46 | 48835 | 0.09132 | 0.08368 | 20456 | 1276
1401 x 107 | 0.01940 | 10990 | 24.07 | 15509 | 0.02737 | 0.02664 | 20443 | 1274
2086x 10° | 0.03362 | 17990 | 39.87 | 41347 | 0.07773 | 0.07212 | 23863 | 1270




5. CONCLUSION

A near automatic method for quantification of breast glandularity from digitized mammograms has been developed
and tested on 60 pairs of patient mammograms and on a phantom. This method was executed automatically except
for the exclusion of projected pectoral muscles. The method consists of the following steps: separation of the breast
from the background, creation of a fuzzy connectivity scene for the glandular region, segmenting this connectivity
scene using an automatic threshold selection method, and then computing various parameters that characterize total
breast glandularity. A set of density and area related parameters has been proposed and their accuracy in terms of
their linear correlation across two different projections have been studies. The scale-based fuzzy connectivity method
has been found to be quite robust and effective in segmenting the mammographic images. The method seems to
be appropriate for characterizing architectural abnormalities. Glandularity is considered to be one of the strongest
factors for breast cancer. Automatic repeatable, and consistent breast glandularity quantification from digitized
mammograms is practical using the proposed method. The correctness of the proposed glandularity quantification
method has been validated by the high R-values of linear correlation between the two projections (CC, MLO) of the
various parameters computed over segmented glandular and fatty regions. A simple phantoms experiment was carried
out which also supports the results. The method removes the subjectivity inherent in interactive threshold selection
techniques currently used. The ability of the computed glandularity parameters in evaluating risk is currently being
investigated.
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An ultra-fast user-steered image segmentation paradigm:
live-wire-on-the-fly
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ABSTRACT

In the past, we have presented three user-steered image segmentation paradigms: live wire, live lane, and the 3D
extension of the live-wire method. In this paper, we introduce an ultra-fast live-wire method, referred to as live-
wire-on-the-fly, for further reducing user’s time compared to live wire. For both approaches, given a slice and a
2D boundary of interest in this slice, we translate the problem of finding the best boundary segment between any
two points specified by the user on this boundary to the problem of finding the minimum-cost path between two
vertices in a weighted and directed graph. The entire 2D boundary is identified as a set of consecutive boundary
segments, each specified and detected in this fashion. A drawback in live wire is that the speed for optimal path
computation depends on image size, compromising the overall segmentation efficiency. In this work, we solve this
problem by exploiting some properties of graph theory to avoid unnecessary minimum-cost path computation during
segmentation. Based on 164 segmentation experiments from an actual medical application, we demonstrate that live-
wire-on-the-fly is about 1.5 to 33 times faster than live wire for actual segmentation, although the pure computational
part alone is found to be over a hundred times faster.

Keywords: image segmentation, boundary detection, active boundaries. 3D imaging, shortest-path algorithms,
dynamic programming, graph theory.

1. INTRODUCTION

Image segmentation is a hard problem with numerous applications in the imaging sciences.! It consists of two tightly
coupled tasks - recognition and delineation. Recognition is the process of identifying roughly the whereabouts of a
particular object in the image and delineation is the process of specifying the precise spatial extent and composition
of this object. While computer algorithms are very effective in object delineation, the absence of relevant global
object-related knowledge is the main reason for their failure in object recognition. On the other hand, a simple user
assistance in object recognition is often sufficient to complement this deficiency and to complete the segmentation
process. There are many difficult segmentation tasks that require a detailed user assistance. To address these
problems, a variety of interactive segmentation methods are being developed.? These methods range from totally
manual painting of object regions or drawing of object boundaries to the detection of object region/boundaries with
minimal user assistance.37

We have been developing interactive segmentation strategies with two specific aims: (i) to provide as complete a
control as possible to the user on the segmentation process while it is being executed, and (ii) to minimize the user
involvement and the total user’s time required for segmentation, without compromising the precision and accuracy of
segmentation. Our strategy in these methods has been to actively exploit the superior abilities of human operators
(compared to computer algorithms) in object recognition and the superior abilities of computer algorithms (compared
to human operators) in object delineation.

In the past, we have presented two user-steered segmentation paradigms, referred to as live wire and live lane,®8 to
segment 3D /4D object boundaries in a slice-by-slice fashion. These methods are in routine use in two applications®!2
with over 15,000 tracings done so far. Although the live-wire method has its origin in some early joint work between
Barrett and Udupa,'3' this method has been subsequently developed independently by the two groups.6-8:16-18
There are many differences between the live-wire method developed by each group, as previously explained in.
Besides these differences, we have extended the ideas underlying the live-wire method to create new methods, live
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Jane® and the 3D extension of live wire.!® In this paper, we introduce an ultra-fast live-wire method, referred to
as live-wire-on-the-fly, with a new live-wire algorithm for drastically reducing user’s time compared to our previous
work on 2D live wire.

In live wire,%7 to segment a 2D boundary, the user initially picks a point on the boundary and all possible

minimum-cost paths from this point to all other points in the image are computed via dynamic programming.
Subsequently, a “live wire” is displayed in real time from the initial point to any subsequent position taken by the
cursor. If the cursor is close to the desired boundary, the live wire snaps on to the boundary. The cursor is then
deposited and a new live-wire segment is found next. The entire 2D boundary is specified via a set of live-wire
segments in this fashion. A drawback of this approach is the computational time for all possible minimum-cost
segments from each selected point on the boundary to other points in the image. This time increases with the size
of the image compromising the interactivity of the method in some practical situations. For images from 256 x 256
to 1024 x 1024 pixels, for example, live wire running on a 300MHz Pentium PC requires about 2 to 180 seconds to
compute all possible minimum-cost segments from each selected point.

In live wire on the fly, the user-interaction process remains the same, but we have devised a linear time complexity
algorithm to save a considerable amount of user time by avoiding the computation of all possible minimum-cost
segments. When the user selects a point on the boundary, the live-wire segment is computed and displayed in real
time from the selected point to any subsequent position of the cursor in the image. To make this feasible, we exploit
the fact that by the time we have found a live-wire segment with cost value K, we have actually found all possible
live-wire segments with cost value less than A in the image. Moreover, any live-wire segment with cost value greater
than or equal to K contains one of the previous live-wire segments with cost value less than K. Therefore, the
computation of the minimum-cost segment from a selected point to the current position of the cursor uses the results
of computation from the selected point to the previous position of the cursor.

In Section 2, we present the live-wire-on-the-fiy method and its algorithms. In Section 3, we present the results
of evaluation between live wire and live wire on the fly based on efficiency for segmentation. Finally, we state some
concluding remarks in Section 4.

2. LIVE-WIRE-ON-THE-FLY

We define a 2D scene C as a pair (C,g) consisting of a finite 2D rectangular array C' of pixels and a function
g(p) : C' — [L, H] that assigns to each pixel p in C an intensity value lying in an interval [L, H]. We associate with
C a directed graph in which the vertices of the pixels represent the nodes of the graph and the oriented pixel edges
represent the arcs. A 2D boundary of interest in C is a closed, oriented, and connected contour made up of oriented
pixel edges. Each oriented pixel edge in C is a potential boundary element b, which is called a bel for short. To each
bel b, we assign a set of features whose values characterize the “boundariness” of . These values are converted to
a single joint cost value ¢(b) per bel b. Thus. the problem of finding the best boundary segment (live-wire segment)
between any two points (pixel vertices) specified on the boundary is translated to finding the minimum-cost path
between the corresponding two vertices of the graph. The issues about selection of features and how to convert
feature values into cost values were previously addressed in.® The problem we want to address here is how to reduce
the time for optimum path computation, and, consequently, the total user’s time required for segmentation.

To tackle this problem, we will exploit some known properties of graph theory, particularly for the computation
of shortest-paths, as described in Section 2.1. This leads to the algorithms presented in Section 2.2.

2.1. Graph Properties of Shortest Paths

In the literature on shortest-path algorithms,'® there are many efficient solutions for finding minimum-cost paths in
a weighted and directed graph. Particularly, we have adopted Dial’s implementation of the Dijkstra’s algorithm.?°
This algorithm computes the shortest-paths to all nodes from a single node in O(m + nC) time, where m is the
number of arcs, n is the number of nodes, and C is the maximum cost assigned to any arc in the graph. Actually,
in this case, the cost assigned to each arc should be an integer in the interval [0,C]. Dial’s solution uses a circular
queue with C + 1 buckets of nodes as the priority queue of the Dijkstra’s algorithm. Since the bottleneck of the
Dijkstra’s algorithm is in maintaining the priority queue, Dial’s solution uses the bucket sort algorithm to speed up
this process. We will come back to this issue in Section 2.2.

In our problem, the live-wire segment between a selected point v, on the boundary and the current position v,
of the cursor in C is the shortest-path P = (vs; ~ v.) from v;s to v, in our graph, where the cost of P, denoted
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K (P), is the sum of the joint costs ¢(b) of all bels b comprising P. In fact, Dijkstra’s algorithm returns a tree of
minimum-cost path (or a tree of shortest-path) rooted at vg,2! which consists of all minimum-cost paths from v, to
all vertices in C. We will denote this tree by T(vs) = {P = (v; ~ v.) /v, € C}.

For any real number k, we denote by T} (vs) the tree of minimum-cost path rooted at vs such that the cost of
any path in this tree is less than k. That is, Tj(v,) = {P = (vs ~ ve)/ve € C,K(P) < k}. The algorithm reported
in this paper exploits the following properties of T(vs).

1. To compute the minimum-cost path P = (vs ~ v,) with cost K(P), there is no need to compute T} (vs) for
k> K(P).

2. By the time we have found the minimum-cost path P = (vs ~ v,.) with cost K(P), we have actually found the
tree of minimum-cost path T (py(vs).

3. The tree of minimum-cost path T (v,) contains the tree of minimum-cost path Tk (p)(vs) whenever k > K(P).

We use the first property to modify Dial’s implementation of the Dijkstra’s algorithm to quit optimum path
computation by the time we have found the minimum-cost path P = (vs ~ v,). We call this algorithm DSP (see
Section 2.2). We use the second property to avoid optimum path computation for any path P’ = (vs ~ v!) with
cost K(P') < K(P). Thus, when the user moves the cursor to a new position v, such that K(P') < K(P), and we
have already found P, the algorithm just shows P’ = (vs ~ v) without requiring computation. We use the third
property to continue optimum path computation for paths P’ = (vs ~ v,) with costs K(P') > K(P) based on the
previous result of algorithm DSP for computing P.

2.2. ALGORITHMS
Algorithm LWOF

Input: The joint cost function ¢ and an initial vertex vo selected on a 2D boundary of interest in C;

Output: A closed, connected, and oriented contour B (made up of bels);

Auxiliary Data Structures: A 2D “cumulative cost” array cc representing the total cost of the optimal paths found
so far from v; to other vertices in C; a 2D “direction” array dir indicating, for each vertex, to which of its immediate
neighboring vertices the optimal path goes; a circular queue @ of vertices with C + 1 buckets; a list L of vertices which
have already been processed; a current path P(vs ~ v,), where v, is the current point selected on the boundary and
v, is the current position of the cursor in C; and a list B of bels which have already been identified as belonging to
the boundary of interest in C:

begin
1. set cc(v) to oo and dir(v) to null for all vertices v in C, and set L to empty;
2. vs + vp, set cc(vg) to 0, and put v, in Q;
3. repeat

a. determine the vertex v, in C pointed to by the cursor;

b. if v, is not a vertex of any bel in B then

(i) compute P «-DSP(v,,v,,Q, cc, ¢,dir, L) and display the bels in P;
(i) if ve is selected by the user and v, € C then
a. add the bels in P to B;
b. set cc(v) to 0o and dir(v) to null for all vertices v in C;
¢. remove all vertices v from @, and remove from L all vertices v which do not belong to any bel in
B;
d. vs ¢ v,, set cc(vs) to 0, remove v, from L, and put v, in Q;




r—

endif,
endif,

until the user indicates a “close” operation;
4. v, + vy and remove v, from L;
5. compute P «DSP (v, v, Q, cc,c.dir. L) and display the bels in P;

6. add the bels in P to B and output the bels in B;

end

Algorithm DSP

Input: an initial vertex vs; a terminal vertex v.; the circular queue Q; the cumulative cost array cc; the joint
cost function c¢; the direction array dir: and the list L of already processed vertices;
Output: A set of bels forming an optimal path from vs to ve;

begin

1. whilev. & L do

a. remove a vertex v from Q such that cc(v) = minyeg{cc(v')}, and put v in L;
b. for each vertex v’ such that v’ is in the set of the d-adjacent neighbors of v and v' ¢ L do

(i) compute ccimp = cc(v) + c(b') where b’ is the bel whose direction goes from v’ to v and ¢(b') is the
joint cost of b';
(i) #f coemp < cc(v') then
a. set cc(v') to ccimp and dir(v') to the direction from v’ to v;
b. if v’ & Q then insert v' in Q else update v’ in @;
endif,

endfor,
endwhile;

2. starting from v, trace recursively the next vertex pointed to by the current vertex using the direction
information in dir until vs is reached, and return the bels so traced;

end

In the algorithms above, @ is a bucket represented by a circular vector with C + 1 positions from 0 to C (see
Figure 1). Each position i, i = 0,...,C, has associated with it a doubly linked list which contains vertices with the
same cumulative cost value. In Step 3b(ii)c of algorithm LWOF, we remove all vertices v from Q in O(C) time since
we just have to set to null the list associated with each position 7, 1 = 0,...,C,in Q. An index o is used to indicate
the current initial position in @ (see Figure 1). In Step la of algorithm DSP, a vertex v in @ with the minimum
cumulative cost cc(v) is removed from the beginning of the doubly linked list at position 7. If this list is empty,
io is incremented until the next position in which a non-empty list is found. Taking the worst case, this operation
has a computational time complexity of O(C). In Step 1b(ii)b of algorithm DSP, a vertex v’ with cumulative cost
ce(v') is inserted in Q at the beginning of the doubly linked list at position [ec(v') mod (C + 1)]. This operation has
a computational time complexity of O(1). The Dijkstra’s algorithm guarantees that the vertices in @ will be always
stored in the increasing order of cumulative cost, because the difference between the maximum and the minimum
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cumulative costs of the vertices in Q is always less than or equal to C. In the same step, a vertex v’ in Q may have
its cumulative cost updated, meaning that we have found a new path from v, to v’ with a cost less than the current
cost cc(v’). In this case, we have to remove v’ from its current position in @ and insert it into a new position in Q.
This process is done with a computational time complexity of 0(1).

|

B B B W

<=0
===

Figure 1. Bucket Structure in a circular queue.

In the worst case, algorithm DSP has the same computational time complexity O(m + nC) as in the Dial’s
implementation of Dijkstra’s algorithm, where m is the number of bels in C, n is the number of vertices in C and
C is the maximum cost c(b) assigned to any bel b. Other shortest-path algorithms exist with computational time
complexity less than O(m + nC) (e.g., O(m +nlogC), O(m + n/TogC), and O(mloglog C), see®). These algorithms
use more complex data structures than our circular queue to reduce the time complexity for inserting and removing
vertices. In our implementation, we have a time complexity of O(1) for inserting and updating vertices in Q. In
the worst case, we have a time complexity of O(C) for removing a vertex from @ with minimum cumulative cost, as
opposed to a logarithmic complexity obtained by these algorithms. After some experimentation, we have found that
the number of increments to reach the next non-empty position in @ is usually less than 0.01 of C. Actually, even
C is not a big number. Typically, we have used 4095 and 255 for C in our implementation of live wire. Therefore,

it is not clear that the speed improvement in live wire with other algorithms is really significant. This should be
investigated further.

3. EVALUATION

In% we have assessed the goodness of a segmentation method based on three factors - precision, accuracy, and
efficiency. Precision refers to the repeatability of the method and can be measured by evaluating the variations in
the result of segmentation because of subjective operator input. Accuracy refers to the degree of agreement with
truth. Efficiency refers to the practical viability of the method expressed as some function of the total user’s time
required to complete the segmentation process. Based on 2,000 tracings in a particular application and statistical
analysis of the results, we have shown that the segmentations of the 2D live-wire method in general agree with
those of manual tracing (accuracy) and that the live-wire method is more repeatable (precision), with a statistical
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significance level of p < 0.03. and 1.5-2.5 times faster (efficiency), with a statistical significance level of p < 0.02,
than the manual method. In this section, we will show the results of comparing live wire and live wire on the fly
taking into account the efficiency of the methods. Since the delineation of the contours output by live wire on the
fly is exactely in the same way as in live wire, the accuracy and precision of the former will be identical to those of
the latter, and, therefore, they need not be assessed again.

InS we have introduced a feature called fg in live wire to constrain the search for optimal paths in the current
slice to an annular region (shell) of width W centered around the projection onto the current slice of the contour(s)
traced in the previous slice. With feature fs, live wire yields very fast response even for large images. Of course, we
can also use fs to further improve the efficiency of live wire on the fly on large images, but we will consider in this
section a comparison between live wire with fs and live wire on the fly. Therefore, our experiments will take into
account three methods:

e LW: live wire without fs.
o LWFS: live wire with fy using 1" =60 pixels.
o LWOF: live wire on the fly.

For our experiments, we have chosen one object (the talus bone of the human foot) in one of our ongoing
applications, the kinematic analysis of the tarsal joints of the foot based on MR images.®!!  This was one of the
objects used in the past to evaluate the previous live methods.8'16 We created a set of 67 2D scenes from the images
within our database as follows. The images (slices) in our database are all of size 256 x 256 pixels. We chose a set,
denoted Casg, of 30 slices from this set pertaining to the data set of one subject. By bilinear interpolation of each
of these slices, we created another set, denoted Ciag, of 30 128 x 128 slices. Analogously, we created a set Cs12 of
five 512 x 512 slices and a set Cio2 of two 1024 x 1024 slices from the original 256 x 256 slices. The reason for
choosing a fewer number of scenes of size 512 x 512 and 1024 x 1024 is that the response time of LW in these scenes is
prohibitively slow. One operator segmented the talus in each of these scenes using each of the two methods LW and
LWOF. He also segmented the talus in Case using LWFS. Our evaluation study thus consists of 164 segmentation
experiments in total. More experiments involving other operators are currently underway. We used a 300 MHz
Pentium PC for these experiments.

We denote the time taken to complete any segmentation experiment e by T. (expressed in seconds). Consider
any fixed scene type t € {Ci2s, Cas6, Cs12, Cio24} and method m € {LW, LWOF, LWF8}. We define the time taken
Timm (in seconds/slice) for segmenting the talus in a 2D scene of type t using method m to be the average of all times
T, over all segmentation experiments e involving m and all 2D scenes of type ¢.

We have done three types of timing measurements. The first type measures the CPU times for computing the live
wire segments independent of other supporting processes that are required to conduct live wire segmentation. This
allows us to assess the difference in speed that exists purely between the old and the new algorithms. The second
type measures the time taken by the user to segment one complete contour ignoring the time for other processes such
as displaying the slice and the computation of the cost values c(b) for all bels. The third type includes all processes,
and, therefore, gives an idea of the comparative user time required for overall segmentation for the different methods
in an actual application. We note here that, as in the live-wire method,® training is required only once for an
application and is not needed on a per study basis. This is typically under 5 minutes and is not included in any of
the time measurements.

Tables 1, 2 and 3 list the values of Tym for all possible values of and m, for the three types of measures,
respectively. Although LWOF can find optimum paths hundreds of times faster than LW (see Table 1), users
cannot react with the same speed (see Table 2). Table 3 shows that, from the point of view of actual segmentation,
LWOPF is about 1.5 to 33 times faster than LW for images from 128 x 128 pixels to 1024 x 1024 pixels. Even
constraining optimum path computation into an anular region of width equal to 60 pixels (i.e., method LW F' 8), live
wire on the fly is about 2.3 times faster. Note that, the advantage of live wire on the fly over live wire increases with
the size of the image and with the number of points required per boundary. In our experiments, the 2D boundaries
of the talus require 2 to 5 points in both live wire strategies.
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I | Cizs | Cass | Csiz | Crooa ||
[ TW | 214 | 15.17 | 99.57 | 90124 |
[TWOF || 003 [ 062 | 227 | 874 |
[Lwrs [ - [82 ] - [ - |

Table 1. Segmentation times Ty, in seconds/slice for all possible values of ¢ and m. This table lists the first type
of measurement that indicates the time taken by the shortest-path algorithms only independent of other processes.

1 [ Cios [ Cass | Csiz [ Crona |
T LW | 8.7 ] 2003 | 116.20 | 959.00 |
[TWOF | 567 | 533 | 800 | 1550 |
TIwrs [ - [1413] - - |

Table 2. Segmentation times T}, in seconds/slice for all possible values of ¢ and m. This table lists the second

type of measurement that indicates the time taken by the user to segment one complete contour ignoring the time
for other processes.

[ [ Ci2s | Case | Csiz | Cioes ||
I w [ 12 [ 24 T 120 [ 990 ]
[IWOF] 8 J 8 [ 12 [ 30 ]|

TIwrs ] - [ 18] - T - ]

Table 3. Segmentation times T}, in seconds/slice for all possible values of t and m. This table lists the third type
of measurement that indicates the time taken by the user for overall segmentation including all processes.

4. CONCLUDING REMARKS

We have presented a new user-steered image segmentation paradigm, called live wire on the fly, to segment 3D /4D
object boundaries in a slice-by-slice fashion. The method uses the previously published live wire framework,® but
utilizes a substantially faster shortest-path algorithm for improving speed. Based on 164 segmentation experiments
from an actual medical application, we have shown that the new method is about 1.5 to 33 times faster than live
wire for actual segmentation, although the pure computational part alone is over a hundred times faster. Other
experiments involving multiple operators are being done.

A drawback of live wire is the computation time for all possible minimum-cost segments from each selected point
on the boundary to all other points in the image. This time increases with the size of the image compromising the
interactivity of the method in some practical situations. Tables 1- 3 show that live wire loses efficiency considerably
for images larger than 256 x 256 pixels. We have eliminated this problem in live wire on the fly by avoiding
unnecessary optimum path computation during the segmentation process. Thus, live wire on the fly computes and
displays live-wire segments in real time, even for very large images, even on low-powered computers.
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